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MONOLITHIC INTEGRATED FLOW CIRCUIT 

COUNTERCU R R ENT CHROMATOGRAPHY 
(MIFC): A NEW COLUMN DESIGN FOR 

T. Kolobow, Y. Ito, I. Mychkovsky, P. Peters, 
and J .  Morabito 

Laboratory o f  Technical Development 
National Heart, Lung, and Blood Institute 

Building 10, Room 50-20 
Bethesda, Maryland 2 02 05 

ABSTRACT 

A novel technique t o  produce a monolithic in tegra l ly  formed System 
f o r  countercurrent chromatography is introduced here. Through a molding 
technique, complex r e p e t i t i v e  flow channels were formed i n t o  shee ts  of 
polypropylene. 
separat ion chamber w i t h  a complete s e t  of locules  and i n t e g r a l  t r a n s f e r  
tubes. T h i s  system, ca l led  monolithic integrated flow c i r c u i t  (MIFC), 
was produced i n  various configurat ions and t e s t e d  while r o t a t e d ,  gyrated,  
or o s c i l l a t e d  so as  t o  promote mixing of the  two solvent  phases. 
Performance of each scheme was examined by separat ions of DNP-alanine and 
DNP-glutamic acid w i t h  a two-phase solvent  system composed of chloroform: 
a c e t i c  acid: 0 .1  N H C 1  ( 2 : Z : i ) .  Under optimal condi t ions,  the  
e f f i c i e n c i e s  of the schemes using gyration and o s c i l l a t i o n  were 94% and 
74%, respect ively.  Simple r o t a t i o n a l  mixing was considerably l e s s  
e f f i c i e n t .  

Two of these shee ts  were fused t o  form a closed 

T h i s  compact MIFC system was found t o  be a simple yet i d e a l  way of 
producing flow channels of grea t  complexity f o r  conventional drople t  CCC 
and locular  CCC. The performance of the t e s t e d  configurat ions was 
outstanding. 

Copyright 0 1985 by Marcel Dekker, Inc. 
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INTRODUCTION 

KOLOBOW ET AL. 

Countercurrent chromatography (CCC)  (1-4)  may be conveniently 

divided i n t o  hel ix  CCC and nonhelix CCC. 

column was prepared from a long piece of tubing wound h e l i c a l l y  onto a 

s u i t a b l e  core. 

un i t s  connected wi th  th in  t r a n s f e r  tubes  i n  s e r i e s .  Column preparat ion 

was d i f f i c u l t  and required hundreds of junc t ions ,  each a p o t e n t i a l  source 

of leakage and constr ic t ion.  Preparation of the  locular  column was 

par t icu lar ly  tedious and time consuming because each column uni t  was made 

of multiple c e n t r a l l y  perforated d i s c s  inser ted one by one i n t o  a 

s t r a i g h t  tubular column, 

I n  he l ix  CCC t h e  separat ion 

I n  nonhelix CCC the column consis ted of mult iple  tubular  

The present paper introduces a novel method of producing complex 

r e p e t i t i v e  flow channels formed of t h i n  p l a s t i c  sheets. This  system, 

cal led monolithic in tegra ted  flow c i r c u i t  (MIFC), was found t o  provide an 

idea l  locular  column for  performing CCC. 

PROCESS OF MIFC PRODUCTION 

The forming was s imi la r  t o  vacuum forming b u t  was s p e c i f i c a l l y  

adapted t o  achieve high d e t a i l  reproduction. 

flow channels, and mirror images of the same were machined i n t o  a 

th ick  aluminum j i g  p l a t e  using a numerically cont ro l led  mi l l ing  machine 

Molds of one half  of t h e  

(Fig. 1 A ) .  The polypropylene shee ts  (0.015") were dr ied a t  220°F f o r  2 

t o  6 hours t o  remove any moisture. Two such sheets were al igned i n  t h e  

mold. The purpose of the 1/811 th ick  s i l i c o n e  rubber pad shown i n  Fig. 18 

was t o  force each polypropylene sheet  i n  a hydraulic press  i n t o  t h e  

machined cavi ty  a f t e r  a s u i t a b l e  temperature has been reached (280OF). 
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MONOLITHIC INTEGRATED FLOW CIRCUIT 2175 

A. Aluminum Mold 

B. Molding Process 

C. Fusing Process 

Figure 1. MIFC forming process. A: Aluminum mold f o r  MIFC, B:  Forming 
process; C :  Fusing process. 

Following t h i s  and while i n  the  press  the temperature was ra i sed  t o  310°F 

t o  r e l i e v e  s t r e s s  i n  the formed shee t .  After cooling, the  rubber pad and 

te f lon  sheets  were removed and t h e  molds containing the  polypropylene 

sheets  realigned. The sheets  were then fused under pressure a t  330°F 

(Fig. 1 C ) .  When cooled, the completed p l a s t i c  molding was removed and 

polypropylene tubing fused t o  the  i n l e t  and o u t l e t  ports .  

f o r  leaks ,  the u n i t  was ready for  use. 

After t e s t i n g  
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APPARATUS AND MECHANISM OF CCC 

KOLOBOW ET AL. 

The present study u t i l i z e d  three  mechanical devices, each performing 

a par t icu lar  form of locular  C C C ,  i . e . ,  r o t a t i o n  locular  CCC ( R L C C C ) ,  

gyration locular  CCC ( C L C C C ) ,  and o s c i l l a t i o n  locular  CCC ( O L C C C ) .  The 

design of each instrument and the  mechanism involved i n  each CCC scheme 

a r e  described below. 

RLCCC - 
The apparatus used for  performing RLCCC had been reported e a r l i e r  

( 5 , 6 ) .  I t  consisted of a c y l i n d r i c a l  column holder, 5cm 0 . d .  and 30cm i n  

length, concentr ical ly  mounted around a ro ta ry  s h a f t  which was equipped 

w i t h  a rotary-seal  a t  each end t o  f a c i l i t a t e  continuous e lu t ion .  The 

ro ta ry  s h a f t  was mounted w i t h  a pa i r  of b a l l  bearings on an aluminum 

frame which was positioned a t  a des i rab le  angle from the horizontal  plan. 

A motor (Electro-Craft Corporation, Model 0650) drove the ro ta ry  s h a f t  

through a pair of toothed pul leys  coupled with a toothed b e l t ,  a l l  

mounted on the  aluminum frame, The r o t a t i o n a l  speed of the column holder 

was regulated up  t o  500 rpm with a control  uni t  (Electro-Craf t  

Corporation, Model E-650M). 

The mechanism of RLCCC is schematically i l l u s t r a t e d  i n  F i g .  2 which 

shows a cross-sect ional  view of t h e  locular  column. The column, incl ined 

a t  angle a from the horizontal  plane, is f i r s t  f i l l e d  wi th  the s t a t i o n a r y  

lower phase and the upper  phase is introduced from the  lower end  of the  

locular  column while the column ro ta ted  around its axis .  Then, the  upper 

phase displaced the  lower phase t o  the  l e v e l  of t h e  e x i t  leading t o  the  

next locule ,  the process being continued throughout the column. Once the 

hydrostat ic  equilibrium is es tab l i shed ,  f u r t h e r  e l u t i o n  of the  mobile 

phase only displaces  the upper phase i n  each locule  leaving a l a r g e  
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MONOLITHIC INTEGRATED FLOW CIRCUIT 2177 

F i g u r e  2. Mechanism of RLCCC. 

volume of  t h e  lower p h a s e  s t a t i o n a r y  i n  t h e  column. When t h e  

r e l a t i o n s h i p  between t h e  upper  and t h e  lower  p h a s e s  is r e v e r s e d  a t  t h e  

b e g i n n i n g ,  t h e  e l u t i o n  of t h e  l o w e r  mobile p h a s e  from t h e  u p p e r  end  of 

t h e  column produced a s i m i l a r  c o u n t e r c u r r e n t  p r o c e s s ,  l e a v i n g  a large 

amount of t h e  upper  s t a t i o n a r y  p h a s e  i n  t h e  column. C o n s e q u e n t l y ,  

s o l u t e s  i n t r o d u c e d  i n t o  t h e  column are s u b j e c t e d  t o  a n  e f f i c i e n t  

p a r t i t i o n  p r o c e s s  i n  each l o c u l e  and  f i n a l l y  e l u t e d  o u t  i n  the  order of  

t h e i r  p a r t i t i o n  c o e f f i c i e n t s .  

GLCCC: - 
The o r i g i n a l  GLCCC a p p a r a t u s  (5 )  was modif ied  and  used  for  t h e  

p r e s e n t  s t u d y .  The motor s y n c h r o n o u s l y  d r o v e  a p a i r  of  v e r t i c a l  r o t a r y  

s h a f t s  p o s i t i o n e d  30 cm a p a r t  and b r i d g e d  w i t h  a p a i r  of l i n k s ,  o n e  

h o r i z o n t a l l y  a c r o s s  t h e  upper  t e r m i n a l s  and t h e  o ther  s i m i l a r l y  across 

t h e  lower t e r m i n a l s .  The c o n n e c t i o n  of the  p i n s  e c c e n t r i c a l l y  mounted a t  

e a c h  t e r m i n a l  of t h e  r o t a r y  s h a f t s  t o  t h e  hole of t h e  b a l l  b e a r i n g s  
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2178 KOLOBOW ET AL. 

embedded i n  each end of the  l i n k s  produced gyrat ion or  nonrotat ional  

c i r c u l a r  motion of t h e  l i n k s  and the column holder, supported v e r t i c a l l y  

between the l i n k s .  The rad ius  of gyration was determined by t h e  d i s tance  

between the pin and the a x i s  of t h e  ro ta ry  s h a f t  a t  each terminal and can 

be adjusted a t  l 1 I ,  

holes. I n  order t o  balance the apparatus, the proper s i z e  of a 

counterweight was mounted a t  t h e  middle port ion of each r o t a r y  sha f t  on 

the s ide  opposite t o  t h e  loca t ion  of the pin e c c e n t r i c a l l y  mounted a t  

each terminal. The gyrat ional  speed of t h e  apparatus is adjus tab le  t o  

1000 rpm. 

or ' /4l1 by mounting t h e  pins i n t o  t h e  respec t ive  

The mechanism of CLCCC has been described e a r l i e r  (5,6). Fig. 3 

shows a schematic diagram of the apparatus ( A )  and the  e f f e c t s  of the 

gyration on the two immiscible solvent  phases and their  i n t e r f a c e  i n  an 

individual locule. On cross-section (B) through a middle portion of a 

locule ,  successive posi t ions of one locule  a r e  shown a s  i t  gyrates  about 

the cent ra l  point where t h e  upper phase ( c l e a r )  and t h e  lower phase 

(shaded) a r e  seen separated by cent r i fuga l  force forming an i n t e r f a c e  

perpendicular t o  t h e  force vector. 

force changes continuously, and both solvents  and i n t e r f a c e  r o t a t e  w i t h  

respect  t o  the  X marked on the  column wall. Thus,  the  drag between the 

solvent  and the i n t e r n a l  sur face  of the locule  induces s t i r r i n g  i n  each 

phase t o  acce lera te  the  p a r t i t i o n  process. On t h e  longi tudinal  sec t ion  

( C )  through t h e  center  of t h e  locules ,  the  solvents  form an i n t e r f a c e  

perpendicular t o  the  vector given by the  sum of t h e  cent r i fuga l  and 

gravi ta t iona l  acce lera t ions  a s  i l l u s t r a t e d  i n  the  f igure .  The angle  a 

determines both volume r a t i o  and i n t e r f a c i a l  area between the  two phases 

i n  the  locule .  Since the  mobile phase usual ly  covers the e n t i r e  area of 

t h e  e x i t  hole  i n  t h e  locule ,  t h e  maximum i n t e r f a c e  a rea  is achieved only 

The d i rec t ion  of the  cent r i fuga l  D
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MONOLITHIC INTEGRATED FLOW CIRCUIT 2179 

GYRATION LCCC 

A 

Outlet 

W 
Inlet 

C 

Figure 3. Mechanism of GLCCC. A :  Schematical diagram of the  apparatus. 
B: Cross-sectional v iew through t h e  middle port ion of a 
locule. C:  Longitudinal sec t ion  through the  a x i s  of the  
locule .  

by e l u t i n g  w i t h  e i t h e r  t h e  upper phase upwards or  the  lower phase 

downwards through the  column. 

OLCCC: 

The formed MIFC was f i r m l y  taped onto a s u i t a b l e  holding frame such 

a s  l i g h t  polystyrene foam, and mounted t o  a v e r t i c a l l y  positioned 

reciprocat ing frame f o r  enhanced mixing and shaking (Fig. 4 A ) .  T h i s  
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2180 KOLOBOW ET AL. 

A 

OSCILLATING (vibrating) MIK 

I I 
Figure 4 .  Mechanism of OLCCC. A:  Overall view of the o s c i l l a t i n g  

locular  column. B: Ef fec ts  of o s c i l l a t i o n  on t h e  i n t e r f a c e  of 
the two solvent  phases. 
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MONOLITHIC INTEGRATED FLOW CIRCUIT 2181 

B 
Linear Interface Broadened Interface 

/ / 
7 7 

Stationary Low Frequency High Frequency 
Of Oscillation Of Oscillation 

Figure 4B. 

apparatus cons is t s  of a platform connected through l i n e a r  bearings t o  a 

motor-driven r o t a t i n g  flywheel, The r e s u l t i n g  l i n e a r  motion displayed a 

s inusoidal  undulation while both t h e  amplitude and  frequency of 

o s c i l l a t i o n  could be adjusted over a wide range. With a speed cont ro l  

the  frequency of o s c i l l a t i o n  could be varied from zero t o  900 cycles  per 

min .  

In  operation, the  system was primed a s  described under RLCCC. On 

s t a r t i n g  t o  shake, there  was a c t i v e  mixing of t h e  two phases i n  every 

locule. The most ac t ive  mixing was a t  the i n t e r f a c e  which appeared a s  a 

broad band ra ther  than a d i s c r e t e  l i n e .  Under stroboscopic observat ion 

the  in te r face  became broader a s  the  frequency and/or the  amplitude of 

o s c i l l a t i o n  increased (Fig. 4 B ) .  

EXPERIMENTAL 

Column 

Two types of MIFC p l a t e  were used  f o r  performing LCCC. Each p l a t e  

was made of two 0.015" th ick  polypropylene s h e e t s  measuring 26cm x 40 cm. 
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2182 KOLOBOW ET AL. 

One p l a t e  ( spher ica l  locular  column) consis ted of 1174 spher ica l  locules ,  

each 6 mm i n  diameter, with a t o t a l  capaci ty  of 134 m l  including the 

volume of the  t r a n s f e r  channels. The second t y p e  ( c y l i n d r i c a l  locular  

column) consisted of 642, c y l i n d r i c a l  locules ,  each measuring 6 mm i n  

diameter and 10 mm long, with a t o t a l  capacity of 175 m l .  Each column 

was wrapped with aluminum f o i l  t o  minimize permeation loss of the  organic  

solvents  through polypropylene. 

Preparation of Two-Phase Solvent System and Sample Solut ion 

A two-phase solvent  system composed of chloroform, a c e t i c  ac id ,  and 

0.1N hydrochloric acid (2:2:1 by volume) was used i n  these  s t u d i e s .  

Chloroform was of g l a s s - d i s t i l l e d  chromatographic grade (Burdick and 

Jackson Laboratories, Inc., Muskegon, M I )  while both g l a c i a l  a c e t i c  ac id  

(J.  T. Baker Chemical Co., Phi l l ipsburg,  NJ) and hydrochloric acid 

( F i s h e r  S c i e n t i f i c  Company, Fair  Lawn, NJ) were of reagent grade. The 

solvent  mixture was thoroughly equi l ibra ted  i n  a separatory funnel a t  

room temperature before use. 

Two dinitrophenyl ( D N P )  amino acids  (Sigma Chemical Co., S t .  Louis, 

Mo) were selected as t e s t  samples f o r  the above solvent  system. 

were N-2,4-DNP-DL-glutamic acid (DNP-glu) (1.9) and N-2.4-DNP-L-alanine 

(DNP-ala) (0.56); the  p a r t i t i o n  coef f ic ien t  of each sample i n  t h e  above 

solvent  system expressed a s  t h e  r a t i o  of s o l u t e  concentration i n  t h e  

upper phase t o  t h a t  i n  t h e  lower phase is i n  parentheses. The sample 

so lu t ion  was prepared by dissolving the  above samples i n  the upper phase 

t o  obtain a concentration of each component a t  0.5gl. 

Test Procedures 

They 

In  each separat ion t h e  column was f i r s t  f i l l e d  with the  s t a t i o n a r y  

T h i s  was followed by i n j e c t i n g  2 m l  of sample so lu t ion  a t  the  phase. 

sample port located a t  the  i n l e t  of the  column. Then the  mobile phase 

was pumped i n t o  t h e  column a t  a se lec ted  flow rate while the  apparatus 
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MONOLITHIC INTEGRATED FLOW CIRCUIT 2183 

was operated a t  a se lec ted  r a t e .  The e l u a t e  from the o u t l e t  of the  

column was continuously monitored through an LKB Uvicord S a t  275 nm and 

then col lected i n t o  a graduated cyl inder  t o  measure s t a t i o n a r y  phase 

re ten t ion .  Both upper  aqueous and lower nonaqueous phases were used a s  

the  mobile phase, 

each column by changing operat ional  conditions such a s  the mobile phase 

and i ts  flow r a t e ,  speed of the  apparatus, o r ien ta t ion  of t h e  column, 

e t c .  

Analyses of P a r t i t i o n  Efficiency 

I n  each LCCC scheme, the  experiments were repeated f o r  

Performance of each column was evaluated from the e l u t i o n  p r o f i l e  of 

the  two peaks i n  the  chromatogram i n  several  d i f f e r e n t  ways by 

ca lcu la t ing  theore t ica l  p l a t e  number n, p a r t i t i o n  e f f ic iency  per locule ,  

time required f o r  y i e l d i n g  one t h e o r e t i c a l  p l a t e ,  and peak reso lu t ion  Ro.  

The theore t ica l  p l a t e  number was obtained from the re ten t ion  time of the 

peak maximum (R) and width (W) f o r  each peak according t o  t h e  

conventional equation 

n = (4R/W)2 (1). 

The first and second peaks of ten  showed s u b s t a n t i a l l y  d i f f e r e n t  n values 

which were then averaged. P a r t i t i o n  e f f ic iency  per locule  was then given 

by n over t h e  number of locules. Time required f o r  yielding one 

theore t ica l  p l a t e  was given by re ten t ion  time of the  solvent  f r o n t  

divided by the average n value. Peak reso lu t ion  was obtained from t h e  

equation 

R o  = 8(R2 - R1)/(W2 + W1) (2) 

where R1 and R2 denote t h e  re ten t ion  times and W1 and W 2  denote the  w i d t h  

of the  f i rs t  and second peaks provided t h a t  a l l  values a r e  expressed i n  

the same uni ts .  
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RESULTS AND DISCUSSION 

KOLOBOW ET AL. 

Chromatograms i l l u s t r a t e d  i n  Fig. 5 were obtained from three  

d i f f e r e n t  locular  CCC schemes under the  optimized operat ional  conditions. 

All separat ions were performed with a standard MIFC column cons is t ing  Of 

642 cy l indr ica l  locules  with a t o t a l  capaci ty  of 175ml a t  a flow of 120 

ml/h w i t h  each of t h e  phases a s  the  mobile phase. 

i n  each separat ion.  

Sample volume was 2 m l  

In a l l  chromatograms two DNP amino ac id  components were resolved a s  

symmetrical peaks and  e luted i n  two t o  three hours. As shown i n  Fig. 5 ,  

the use of the upper  phase a s  the mobile phase ( r a t h e r  than the  lower 

phases) yielded s u b s t a n t i a l l y  higher p a r t i t i o n  e f f ic iency  and peak 

resolut ion.  T h i s  can be explained on the bas i s  of solvent-wall 

in te rac t ion  i n  the  locule. I n  a l l  LCCC schemes t h e  two solvent  phases 

a re  d is t r ibu ted  by g rav i ty  while t h e  flowing mobile phase s t e a d i l y  forms 

droplets  i n  the  s ta t ionary  phase a t  the  i n l e t  of t h e  locule .  These 

droplets  a r e  quickly dispersed i n t o  the s t a t i o n a r y  phase by the  column 

motion t o  provide both broad in te r face  a rea  and e f f i c i e n t  mixing of the  

two phases, However, droplet  formation may be reduced or  prevented 

al together  by wal l -a f f in i ty  of t h e  mobile phase which only tends t o  hug 

the in te rna l  wall surface of the locule ,  without forming droplets .  Since 

t h e  lower chloroform-rich nonaqueous phase has a s t rong a f f i n i t y  t o  the 

column wall made of polypropylene, the use of such a lower phase a s  the 

mobile phase may result i n  the  reduced ef f ic iency .  

Selected experimental data  obtained from each scheme a r e  summarized 

i n  Table 1. In RLCCC, the  inc l ina t ion  of the column a x i s  and r o t a t i o n a l  

speed were found t o  be t h e  major var iables .  The optimal inc l ina t ion  of 
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UPPER PHASE MOBILE LOWER PHASE MOBILE 

2185 

0 1 2 

TIME (hrs) 

Rotallon 150 rpm 

1 2 3 

TIME (hrs) 

Figure 5. Typical chromatograms obtained from three  d i f f e r e n t  LCCC 
schemes. A :  RLCCC; B: CLCCC; and C: OLCCC. 
I n  a l l  separat ions the experimental conditions are a s  follows: 
Column: MIFC with 642 c y l i n d r i c a l  locules  and a t o t a l  capaci ty  
of 175 m l .  
Sample: DNP-glu and DNP-ala mixture 2 m l  each component a t  0.5 
g% i n  t h e  upper aqueous phase. 
Flow Rate: 120 ml/h. 
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the column axis  against  the horizontal  plane, f o r  providing the  g r e a t e s t  

i n t e r f a c i a l  area of the  two phases, varied with the shape of t h e  locule .  

As indicated i n  Table 1, the optimum inc l ina t ion  f o r  the  c y l i n d r i c a l  

locule  was 20° and t h a t  f o r  t h e  spher ica l  locule  was 35O. Smaller 

inc l ina t ion  decreased t h e  s t a t i o n a r y  phase re ten t ion  while grea te r  

inc l ina t ion  resu l ted  i n  lower p a r t i t i o n  eff ic iency.  I n  both t y p e s  of the  

locular  column the maximum column ef f ic iency  was observed a t  the  

r o t a t i o n a l  speed of 150 rpm. 

I n  order t o  e l iminate  the need f o r  the r o t a r y  seals, experiments 

were performed by manually reversing the r o t a t i o n  every 5 seconds o r  

about 1 2  ro ta t ions  a t  150 rpm, which produced e s s e n t i a l l y  t h e  same 

r e s u l t s  as  obtained wi th  the  regular  r u n  a t  t h e  same rpm. However, 

revers ing t h e  ro ta t ion  every l l O o  (using the  device f o r  an automobile 

windshield wiper) resu l ted  i n  much lower peak resolut ion.  

I n  GLCCC best r e s u l t s  were obtained a t  450 rpm f o r  t h e  spher ica l  

locular  column and a t  600 rpm f o r  the  cy l indr ica l  locularcolumn, both 

wi th  a gyrat ional  r a d i u s  of 2.5 cm. This gives angle a ( s e e  Fig. 3 B )  f o r  

the spher ica l  locule  a t  l o o  and t h a t  f o r  the  cy l indr ica l  l o c u l e  a t  50. 

Under these operat ional  condi t ions flow r a t e s  of 120 ml /hr  and 60 ml/hr 

yielded s a t i s f a c t o r y  r e s u l t s  for  both columns. Lower speed of gyrat ion 

gave increased re ten t ion  of the  s t a t i o n a r y  phase b u t  with broader peaks, 

whereas higher gyrat ional  speeds produced excessive carryover of the 

s ta t ionary  phase from the column r e s u l t i n g  i n  lower peak reso lu t ion .  

OLCCC was performed i n  a v e r t i c a l  column posi t ion a t  a 2.5 cm 

amplitude of o s c i l l a t i o n .  The results obtained under these condi t ions 

were found t o  be q u i t e  s imi la r  t o  those obtained with GLCCC. Compared 

w i t h  CLCCC, OLCCC gave s u b s t a n t i a l l y  shor te r  re ten t ion  time of the 

solvent f ront  while i t  tended t o  produce more p e r s i s t e n t  carryover of t h e  

s ta t ionary  phase i n  the l a t e r  s tage  of e lu t ion .  
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Effects  of column motion on p a r t i t i o n  e f f ic iency  of each LCCC - 
scheme. 

As shown from Fig. 5 and Table 1, both GLCCC and OLCCC yielded much 

higher peak reso lu t ion  than RLCCC. 

cy l indr ica l  locular  column expressed i n  terms of percent t h e o r e t i c a l  

p la te  per locule  for  three LCCC schemes a r e  plot ted against  the r a t e  of 

column motion i n  e i t h e r  r o t a t i o n  or o s c i l l a t i o n  per minute. Two curves 

were drawn f o r  each scheme, one f o r  upper phase mobile (open symbol) and 

the other  f o r  lower phase mobile ( s o l i d  symbol). The column ef f ic iency  

of RLCCC ( c i r c l e )  s t a r t e d  t o  r i s e  e a r l i e r  and reached the maximum value 

of 12% t o  15% a t  150 rpm, followed by sharp decl ine w i t h  fur ther  increase 

of the ro ta t iona l  r a t e .  In both CLCCC ( t r i a n g l e )  and OLCCC (square)  the 

eff ic iency s t a r t e d  t o  r i s e  l a t e r  a t  between 200 and 300 rpm, b u t  

I n  Fig. 6 p a r t i t i o n  e f f ic iency  of the 
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continued t o  r i s e  w i t h  increased column motion up t o  600 rpm or 

osci l la t ion/min and reached t h e  maximum ef f ic iency  of near 100% (upper 

phase mobile). 

The i n f e r i o r  performance of RLCCC is l i k e l y  t o  be caused by t h e  

cent r i fuga l  force on the  two solvent  phases i n  the r o t a t i n g  column. Fig. 

7 shows the cross-sect ional  view through the  c e n t r a l  axis of the  

cy l indr ica l  locular  column f o r  RLCCC ( A  and B )  and CLCCC ( C ) .  

I n  Fig. " A ,  the  locular  column wrapped around the  column holder 

r o t a t e s  a t  angular veloci ty  w w i t h  the  holder i n c l i n a t i o n  a from the 

horizontal  plane, The two solvent  phases i n  each locule  are t h u s  

subjected t o  the combined force f i e l d ,  i.e., g rav i ty  g and r e l a t i v e  

cent r i fuga l  force vector ru2 a c t i n g  i n  an asymmetric manner around the  

column holder. In the  lower pos i t ion  of the locule  the  c e n t r i f u g a l  force  

is added t o  the grav i ty  r e s u l t i n g  i n  enhancement of t h e  f o r c e  f i e l d  while 

in  the upper posi t ion of the locule  the cent r i fuga l  force opposes grav i ty  

causing reduction of the  magnitude and deviat ion of t h e  t o t a l  force  f i e l d .  

This reduces in te r face  area and degree of c i r c u l a r  mixing of t h e  two 

solvent  phases i n  t h e  locule .  With fur ther  increase of t h e  r o t a t i o n a l  

speed, t h e  r e l a t i v e  cent r i fuga l  force  vector would eventual ly  exceed t h e  

grav i ty  r e s u l t i n g  i n  loss of c i r c u l a r  motion of the  solvent  phases with 

respect  t o  the wall of t h e  locule. Under these  circumstances the  two 

solvent  phases a r e  d i s t r i b u t e d  i n  such a way t h a t  t h e  lower phase always 

s t a y s  a t  the per ipheral  portion and the  upper phase i n  the  proximal 

portion of the  locule  a s  shown i n  F i g .  7B .  Consequently, a high speed 

r o t a t i o n  i n t e r f e r e s  w i t h  s o l u t e  p a r t i t i o n i n g  process by l i m i t i n g  mixing 

of the  two solvent  phases i n  the  locule .  Consequently, the  p a r t i t i o n  

e f f ic iency  i n  RLCCC can still  be improved by mounting the  locular  column 

closer  t o  the center  of r o t a t i o n ,  the reby  minimizing the  undesirable  

e f f e c t s  of the  cent r i fuga l  force. 
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A 

B 

Figure 7. Effects of the ro ta t iona l  speed on the d i s t r ibut ion  
solvent  phases i n  RLCCC ( A  and B) and GLCCC (C). 

of the two 
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C 

I I 1 

Figure 7C. 

In Fig. 7C a s imi la r  cy l indr ica l  locular  column wrapped on a 

v e r t i c a l  column holder is undergoing gyrat ional  motion or  nonrotat ional  

c i r c u l a r  motion around cent ra l  a x i s  0. I n  order  t o  f a c i l i t a t e  comparison 

with RLCCC i n  Fig. 78, the  gyrat ional  rad ius  and the angular ve loc i ty  

a r e  s i m i l a r l y  s e t  a t  r and W ,  respec t ive ly .  Then gyrat ion produces 

r e l a t i v e  centr i fugal  force  ru2 which r o t a t e s  around the v e r t i c a l  a x i s  a t  

a uniform angular veloci ty ,  W. The t o t a l  force ac t ing  on t h e  holder is 

given by the  sum of ru2 and gravi ty  g t o  determine t h e  i n c l i n a t i o n  of t h e  

in te r face  of the two solvent  phases in each locule .  Consequently, 

gyrat ion produces a symmetrical o r ien ta t ion  of t h e  i n t e r f a c e  around t h e  

c e n t r a l  a x i s  a s  i l l u s t r a t e d  in Fig. 5C. Since the column wall does 

not r o t a t e  with respect  t o  the  outs ide  observer, t h e  two so lvent  phases 

and t h e i r  in te r face  r o t a t e  against  the  wall t o  promote the  p a r t i t i o n  
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procesa. 

the column compared w i t h  the  RLCCC described e a r l i e r .  

Th i s  permits appl ica t ion  of a much higher gyrat ional  speed t o  

In  OLCCC, o s c i l l a t o r y  motion produces a f luc tua t ing  force  f i e l d  

act ing t o  and f r o  along the  a x i s  of the locule .  

two solvent phases a t  t h e i r  in te r face  t o  form mult iple  small drople t s  of 

one phase i n  the o ther  t o  promote s o l u t e  p a r t i t i o n  process along a broad 

interface.  Substant ia l  broadening of the  i n t e r f a c e  wi th  increased 

o s c i l l a t o r y  frequency has been observed wi th  a dyed mobile phase under 

stroboscopic illumination. In addi t ion ,  o s c i l l a t i o n  and flow r a t e  of t h e  

mobile phase may determine the s i z e  of the mobile phase drople t s  formed 

a t  the  entrance of each locule  t o  a f f e c t  t h e  p a r t i t i o n  eff ic iency.  The 

higher the frequency of o s c i l l a t i o n  and the  slower the  flow r a t e ,  the 

smaller the droplets  and t h e  higher the  p a r t i t i o n  eff ic iency.  I t  is 

in te res t ing  t o  note tha t  CLCCC and OLCCC yielded s imi la r  column 

eff ic iency a t  the same frequency, even though t h e  force  f i e l d s  i n  these 

two schemes a r e  q u i t e  d i f f e r e n t .  

T h i s  motion a g i t a t e s  the 

Overall r e s u l t s  of our preliminary s t u d i e s  ind ica te  grea t  usefulness 

of MIFC a s  locular  columns f o r  CCC. 

following advantages over the  conventional locular  columns. 

The MIFC column provides the 

1. The column is e a s i l y  fabr ica ted  t o  a desired conformation. 

2. The column has no i n t e r n a l  connectors except f o r  the  i n l e t  and 

o u t l e t  l i n e s .  

3. The column is l i g h t ,  compact, nonfragi le  and r e l a t i v e l y  

inexpensive, and is s u i t a b l e  for  mass production. 

I t  is of great  i n t e r e s t  t h a t  columns can be made i n t o  a 

doughnut-shaped r o t o r  f o r  use in a centr i fuge f o r  e l u t r i a t i o n  of 

p a r t i c l e s  and for  CCC w i t h  polymer phase systems. 
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